
Model-Based Systems Engineering For Project Success:
The Complete Process

James Long, Vitech Corporation

Abstract

This basic tutorial identifies the elements and benefits of a complete, proven model-based system
engineering process, and demonstrates its tailorability and value for project success using
vignettes from an information management system and a sample System of Systems (SoS)
application. The tutorial illustrates how the model-based system engineering process supports
both document-driven and model-based paradigms, whether in top-down, middle-out, or reverse
engineering environments. It discusses how to know when each element of the process has been
completed, and how to develop and validate functional and physical architectures using
executable architectures. The requirement for concurrent engineering, the onion model, and
synchronization of models and data are presented.

The participants will be introduced to a flexible system engineering process suitable for system
development tasks across the complexity spectrum. In addition to the process description, the
tutorial will include a sample solution to illustrate the recommended techniques, views,
completion conditions, and products of an MBSE system development methodology. It will also
include examples of the development of graphical views commonly used by practitioners of
DoDAF and SysML approaches.

This tutorial is focused on highlighting how the use of model-based systems engineering can
meet the government requirements for delivering architecture framework products while
allowing the engineering organizations (industry and government) to successfully perform the
systems engineering required to develop an executable design.

Model-Based Systems Engineering For Project Success:
The Complete Process

James Long, Vitech Corporation

Biography

Mr. James LONG, USA, is the Chief Methodologist and former president of Vitech
Corporation. He has been a performing system engineer and innovator since creating the first
behavior diagrams (then called Function Sequence Diagrams) at TRW in 1967. He played a key
technical and management role in the maturing and application of that system engineering
process and technology at TRW and Vitech. Mr. Long worked on many system developments
with an emphasis on complex MIL/AERO, satellite, and C3I systems with embedded software
for over 50 years. He is a member of INCOSE, active in NDIA’s Systems Engineering Division
and its M&S Committee, and supported the OMG’s efforts to expand UML 2.0 to systems
engineering (SysML).

Mr. Long has authored many technical papers and delivered tutorials in system engineering
techniques and applications to much of the Defense and Intelligence community. Mr. Long
received the M.S. in Astronautics from Purdue and the B.S. in Mechanical Engineering from
General Motors Institute.

Mr. Long has been elected as a Fellow of INCOSE and was also selected as an Eminent Engineer
by Tau Beta Pi, the honorary engineering scholastic society. The eminent engineering
designation is recognition for career achievement in engineering.

Model-Based Systems
Engineering For Project Success:

The Complete Process

Vitech Corporation
July 2010

James E. Long
Chief Methodologist

David Long
President

Topics

• A brief introduction to Model-Based Systems
Engineering (MBSE)

• Applying a MBSE process
• Service Oriented Architectures (SOAs)
• Overview of SE and DoDAF 2.0
• MBSE in practice: Developing a system of

systems
• Summary and review

Presented at INCOSE 2010 Symposium Slide 2

A Brief Introduction to
Model-Based Systems

Engineering

Presented at INCOSE 2010 Symposium

• Specifications

• Interface requirements

• System design

• Analysis & Trade-off

• Test plans

Moving from document-centric to model-centric

Past

AirplaneATC Pilot

Request to proceed

Authorize

Power-up

Initiate power-up

Direct taxiway

Report Status

Executed cmds

Initiate Taxi

Future

Systems Engineering:
A Practice in Transition

Reprinted from INCOSE Model-Based Systems Engineering Workshop, February 2010

Presented at INCOSE 2010 Symposium Slide 4

Systems Engineering:
Broad Applicability

Presented at INCOSE 2010 Symposium Slide 5

The Hidden Complexity
of Systems Engineering

Constraints

Verification

Issues
Trade
Studies

MOE’s Interfaces

Risks
Traceability

Validation

Architecture

Decisions

Performance

Reviews Change
Management

Presented at INCOSE 2010 Symposium Slide 6

Model-Based Systems Engineering

• Formalizes the practice of
systems engineering
through the use of models

• Broad in scope
– Integrates with multiple

modeling domains across life
cycle from SoS to component

• Results in
quality/productivity
improvements & lower risk
– Rigor and precision
– Communications among

system/project stakeholders
– Management of complexity

Life Cycle Support

Ve
rt

ic
al

In
te

gr
at

io
n

Reprinted from INCOSE Model-Based Systems Engineering Workshop, February 2010

Presented at INCOSE 2010 Symposium Slide 7

Setting the Context – The Four Primary
Systems Engineering Activities

Data Data

verified by

Source Requirements Domain

Architecture Domain

Behavior Domain

V&V Domain

verified by

Originating requirements
trace to behavior

Originating requirements trace to physical components

Behavior is allocated to
physical components

verified by

Data

Presented at INCOSE 2010 Symposium Slide 8

Primary Design Traceability; It’s Done with
Relationships (Verbs), Not Attributes (Adjectives)

Traceability:
• The parts of the system design

that satisfy specific originating
requirements

• The decision history
• The basis for subsequent

changes in originating
requirements

Document

documents

refined by
C.1

Universe

Component

C.2

Customers

Component

C.3

Collectors

Component

SYS.1
Collection

Management
System
System

S.1.1

Analyst/Workstation

Component

S.1.2

Analyst/Command
Center

Component

basis of

user

system

system

user

AND

50.1
s1.Make

Collection
Request

50.2
s1.Accept &

Format Request

50.3
s1.Check Product

Inventory

AND AND

50.4
s1.Get Product
From Inventory

50.5
s1.Provide

Product to User

50.6
s1.Accept
Products

AND

s1.
Formatted
Request

s1.
Formatted
Request

s1. Inventory
Product

s1. Inventory
Product

s1.
Collection
Request

s1.
Collection
Products

decomposed by

allocated to

C.1

Universe

Component

C.2

Customers

Component

C.3

Collectors

Component

SYS.1
Collection

Management
System
System

S.1.1

Analyst/Workstation

Component

S.1.2

Analyst/Command
Center

Component

built from

results in
Issue

generates
Function

Requirement

Component

Presented at INCOSE 2010 Symposium Slide 9

Common SE “Tool Suite” Architecture

Verification
Database

Physical
Architecture

Database

Requirements
Management

Behavioral
Analysis

Architecture
Synthesis Verification

Requirements
Database

Behavior
Database

Word Processors
Spreadsheets

Drawing Packages
Spreadsheets

Simulation Packages

Drawing Packages
Spreadsheets

Testing Packages
Spreadsheets

Multiple products utilizing independent databases forces extraordinary
data management – and complicates the original SE effort

Presented at INCOSE 2010 Symposium Slide 10

The Preferred SE Tool Architecture

Data

Data Data Data Data

Data

Requirements
Management

Behavioral
Analysis

Architecture
Synthesis Verification

Integrated, Consistent Analysis: Diagrams, complete specifications, and project work
products automatically generated from the integrated model

Source
Material

Design
Specifications

Presented at INCOSE 2010 Symposium Slide 11

Data

Data

The Systems Engineer’s Dilemma:
Integration and Synchronization

Systems Engineer’s Desktop

extracted
requirements

graph
text

graph 1
graph 2

graph 3

data
items

function
list

open
action
items

traceability
list

analyses
& trade
studies

engineering
note book

Any change will affect
something else

physical
components

interface
definitions

Source
Documents

Printed Reports,
Models, &

Specifications

Presented at INCOSE 2010 Symposium Slide 12

Why are there Problems with SE as
Commonly Practiced Today?

• Outdated approaches (document-based SE and
viewgraph engineering)

• Other detailed issues
– Underestimating the complexity
– Failure to develop and manage the proper set of requirements
– Failure to understand operational concepts
– Too much reliance on a few experienced people
– No repeatable process (CMM)
– Information holes

• Inadequate tools to help with the entire process
– Most tools help in specific areas (e.g. software development,

design [CAD], etc.)
• Increasing use of COTS systems and components
• Shift toward architectures and Systems of Systems

(SoS)

Presented at INCOSE 2010 Symposium Slide 13

Essential Components of MBSE

• MBSE language (encompass at least problem,
solution, and management domains)
– Graphical control constructs
– Behavior
– The repository

• Model-Based Systems Engineering process
• Automatic generation of key documentation,

design artifacts, and other work products

Presented at INCOSE 2010 Symposium Slide 14

The Model-Based System Engineering
Process: Its Inputs and Its Outputs

Systems

Engineering

Process

Source Documents

System Specifications &
Custom Reports

System Design Model

The system engineering process needs to support
top-down, middle-out, and reverse engineering
approaches to system specification and design.

Presented at INCOSE 2010 Symposium Slide 15

System Engineering Expertise

Features of a Complete
Systems Engineering Process

• Convergent
• Model-based
• Concurrent engineering
• Layered, hierarchical solution
• Central engineering repository

– Incorporating system definition language
• With graphical control constructs
• Executable, dynamic validation of system logic
• Context free

• Different initial conditions
– Top-down
– Middle-out
– Reverse engineering

• Accommodates COTS, GOTS, …. concepts
• Automated artifact generation

Presented at INCOSE 2010 Symposium Slide 16

What is a Model?

• A model is a limited representation of a system or
process. Its role is to answer questions about the
entity it represents

• Types of models include
– Executable
– Information
– Design
– Operations
– Process
– Enterprise
– Organization

• Models can be migrated into a cohesive
unambiguous representation of a system

Presented at INCOSE 2010 Symposium Slide 17

MBSE – Three Synchronized Models are Necessary
and Sufficient to Completely Specify a System

1. Control (functional behavior) model

2. Interface (data I/O) model

3. Physical architecture (component)
model

What about performance requirements / resources?
– Captured with parts/combinations of the above models

Presented at INCOSE 2010 Symposium

Models provide basis for knowing when you are done.
Selection of views is important; some provide more insight than others.

Slide 18

Why is a System Definition
Language (SDL) Needed?

• Putting systems engineering information in a
database is like dumping data into a bucket.
Without structure and semantics it means little

• SDL provides a structured, common, explicit,
context-free language for technical
communication

• SDL serves as a guide for requirements
analysts, system designers, and developers

• SDL provides a structure for the graphic view
generators, report generator scripts, and
consistency checkers

Presented at INCOSE 2010 Symposium Slide 19

Impacts of
Model-Based Systems Engineering

• Systems engineering paradigm shift
– vs. text-based or diagram-based

• System model is essential and required
• System model encompasses the system design,

execution, and specification
• System specifications are complete and consistent
• Model is provided to subsequent engineering teams
• Provides process for generation of complete,

consistent, executable system design and
specification

Presented at INCOSE 2010 Symposium

The MBSE technology empowers engineering teams to build a
complete and integrated system definition.

Slide 20

The MBSE
System Definition Language

Presented at INCOSE 2010 Symposium

SDL
Language

English
Equivalent

MBSE Example

Element Noun • Requirement: Place Orders
• Function: Cook Burgers
• Component: Cooks

Relationship Verb • Requirement basis of Functions
• Functions are allocated to Components

Attribute Adjective • Creator
• Creation Date
• Description

Attribute of
Relationship

Adverb Resource consumed by Function
• Amount (of Resource)
• Acquire Available (Priority)

Structure N/A • Viewed as Enhanced FFBD or Activity Diagram

SDL is an Extended Natural Language in ERA Format
(Early Object-Oriented Language for Systems and Models)

Slide 21

Model Element Property Sheet
(Representation in the Repository)

Presented at INCOSE 2010 Symposium

Element Name

Other Element
Attributes

Element
Relationships

Slide 22

Presented at INCOSE 2010 Symposium

A Set of Complete and Executable Graphical
Constructs (Structured Representations)

CONCURRENCY

SELECT

ITERATE

SEQUENCE

MULTIPLE-EXIT

LOOP
REPLICATE

Slide 23

Presented at INCOSE 2010 Symposium

A Set of Complete and Executable Graphical
Constructs (SysML Representations)

SEQUENCE

CONCURRENCY

ITERATE

MULTIPLE-EXIT

LOOP
REPLICATE

SELECT

Slide 24

The Power of Models
and Graphical Representations

• Communication between people with differing specialties and
backgrounds
– Universal language
– Very powerful
– Essential
– Not context sensitive

• Modeling language for architectures
– Physical
– Functional

• Language to support
– Requirements capture
– System boundary definition
– Threads, operational architecture, and system architecture

development
– Traceability
– Impact analysis
– Dynamic verification
– Automatic documentation

Presented at INCOSE 2010 Symposium Slide 25

Integrating the Four Primary SE Activities
through a Design Repository

Data

Data Data

verified by

Source Requirements Domain

Architecture Domain

Behavior Domain

V&V Domain

verified by

Originating requirements
trace to behavior

Originating requirements trace to physical components

Behavior is allocated to
physical components

verified by

Data

Data

Utilizing a layered approach to progressively clarify and elaborate all four domains concurrently
ensures consistency and completeness

System
Design

Repository

Presented at INCOSE 2010 Symposium Slide 26

Integrating the Repository and View
Generators Provides Consistency

Presented at INCOSE 2010 Symposium Slide 27

View Generators using a Common
Repository Guarantee Consistent Views

Program
Specifications

1.
Survey

2.
Analysis

3.
Prelim
Design

4.
Hardware
Study

5.
Detailed
Design

Feasibility
Document

User
Requirement Functional

Specification

System
Specification

Configuration &
Performance Needs

Physical
Requirement

Hardware
Order

Final
Configuration

Budget &
ScheduleUser

Requirement

User

Developer

User

H/W
Supplier

Prog.
Mgmnt

Design
Repository

Not In Inventory

In Inventory

OK

Deficiencies

1

Accept And Format
Request

2

Check Product
Inventory

3

Prioritize Request

4

Determine Collector
Mix

AND

5

Notify User Of
Estimated
Schedule

6

Task Collectors

AND

7

Accept And Format
Collector Products

8

Put Product In
Inventory

OR

9

Get Product From
Inventory

AND

10

Provide Product To
User

11

Evaluate Products
vs. Request

12

Report Deficiencies
And

Recommendations

OR

AND

formatted
request

Information
request

priority of
request

collector mix

estimated
delivery
schedule

collector
tasking

collector
products

inventory
request

collection
products

deficiency
report

External Output

External Input

Data 3

Data 5

Data 4

Data 3

Data 2Data 2

Data 1

Component 2 Component 3Component 1

1

Serial Function

2

Multi-exit
Function

4
Function in
Multi-exit
Construct

5

Function in
Iterate

3

Function in
Concurrency

6

Output Function

Command Link

P
ro

du
ct

 D
el

iv
er

y
L.

..

Analyst Intranet

Li
ne

-o
f-s

ig
ht

 L
in

k

Sensor Product Link

R
eq

ue
st

 L
in

k

P
rim

ar
y

S
at

el
lit

e
Li

nk

System Intranet

S.1.1

RQ-1 Predator
System

Component

S.1.2

Analysts

Component

S.1.3

Command Center

Component

S.1.4

Work Stations

Component

C.2

Tactical Customers

Component

S.1.1.4.1
RQ-1 Predator

Unmanned Aerial
Vehicle
System

View generator
contains format
rules for each
selected view

type

• A graphical view
is defined by
features and a
format

• The features are
in the repository

• The format for
each view type is
defined in the
view generator

Views are projections of the model. Choose the views that serve the purpose.

Presented at INCOSE 2010 Symposium Slide 28

A Momentary Aside for Some Insight –
The Control Enablement & Data Triggering Spectrum

• All control
• Control constructs
• No data
• No data triggering

Combination of:
• Control

• Control constructs

• Data triggering

• Data stores

• Completion criterion

• All data
• Data triggering
• Data stores
• No control

constructs

Behavior Characteristics Spectrum
• More complex control

• Less data triggering

• Less control complexity

• More data triggering

Presented at INCOSE 2010 Symposium Slide 29

Relationships of the Graphical Representations -
FFBDs & DFDs are Limiting Cases

Data Flow Diagram
• Only Data Triggering
• No Control Constructs

•Hotel Reservations System

•Customer requests
•cancellation

•Run management reports
•Customer confirms

•reservation

•Cancel unconfirmed
•reservation

•Make provisional
•reservation

•Accommodation
•rejected

•Manager

•Receptionist

•Check in guest

•Check out guest

•Confirm reservation

•Confirmed
•immediately

•Terms rejected

•Cancel reservation

•<<uses>>

•<<uses>>

•<<extends>>
•a

•<<extends>>

•<<extends>>

•<<uses>>

•<<uses>>

•d01:Diary•Basil:Manager •res123:Reservation

•Cancel unconfirmed reservation
•(UML Sequence)
•SA/2001
•Wed Jun 16, 1999 13:44
•Comment

•Note: The customer MUST be
•notified if a reservation is
•cancelled because the
•confirmation period has expired.

•free reserved accommodation

•char = freeAccommodation(date, duration, roomType)

•cancel reservation

•char = cancelReservation(reservationNumber)

•display reservation details

•char = showReservation(reservationNumber)

•show unconfirmed reservations

•show(startDate, reservationState)

•display cancellation details

•show(startDate, reservationState)

•update status to cancelled

•char = cancel

2

-

4

2

-

4

..

•Program

•Specifications

•1.

•Survey

•2.

•Analysis

•3.

•Prelim

•Design

•4.

•Hardware

•Study

•5.

•Detailed

•Design

•Feasibility

•Document

•User

•Requirement
•Functional

•Specification

•System
•Specification

•Configuration &

•Performance Needs

•Physical

•Requirement

•Hardware
•Order

•Final

•Configuration

•Budget &

•Schedule•User
•Requirement

•User

•Developer

•User

•H/W

•Supplier

•Prog •.

•Mgmnt

•Design

•Repository

•d01:Diary•Basil:Manager •res123:Reservation

•Cancel unconfirmed reservation
•(UML Sequence)
•SA/2001
•Wed Jun 16, 1999 13:44
•Comment

•Note: The customer MUST be
•notified if a reservation is
•cancelled because the
•confirmation period has expired.

•free reserved accommodation

•char = freeAccommodation(date, duration, roomType)

•cancel reservation

•char = cancelReservation(reservationNumber)

•display reservation details

•char = showReservation(reservationNumber)

•show unconfirmed reservations

•show(startDate, reservationState)

•display cancellation details

•show(startDate, reservationState)

•update status to cancelled

•char = cancel

•Hotel Reservations System

•Customer requests
•cancellation

•Run management reports
•Customer confirms

•reservation

•Cancel unconfirmed
•reservation

•Make provisional
•reservation

•Accommodation
•rejected

•Manager

•Receptionist

•Check in guest

•Check out guest

•Confirm reservation

•Confirmed
•immediately

•Terms rejected

•Cancel reservation

•<<uses>>

•<<uses>>

•<<extends>>
•a

•<<extends>>

•<<extends>>

•<<uses>>

•<<uses>>
•External Output

•External Input

•Data 3

•Data 5

•Data 4

•Data 3

•Data 2•Data 2

•Data 1

•Component 2 •Component 3•Component 1

•1

•Serial Function

•2

•Multi-exit
•Function

•4
•Function in
•Multi-exit
•Construct

•5

•Function in
•Iterate

•3

•Function in
•Concurrency

•6

•Output Function

•External
•Output

•External
•Input

•1

•Serial Function •Data 1

•2

•Multi-exit
•Function

•Data 2

•4

•Function in
•Multi-exit
•Construct

•Data 2

•5

•Function in
•Iterate

•Data 3

•Data 3

•3

•Function in
•Concurrency

•Data 5

•Data 4

•6

•Output Function

•Program

•Specifications

•1.

•Survey

•2.

•Analysis

•3.

•Prelim

•Design

•4.

•Hardware

•Study

•5.

•Detailed

•Design

•Feasibility

•Document

•User

•Requirement
•Functional

•Specification

•System
•Specification

•Configuration &

•Performance Needs

•Physical

•Requirement

•Hardware
•Order

•Final

•Configuration

•Budget &

•Schedule•User
•Requirement

•User

•Developer

•User

•H/W

•Supplier

•Prog •.

•Mgmnt

•Design

•Repository
•Program

•Specifications

•1.

•Survey

•2.

•Analysis

•3.

•Prelim

•Design

•4.

•Hardware

•Study

•5.

•Detailed

•Design

•Feasibility

•Document

•User

•Requirement
•Functional

•Specification

•System
•Specification

•Configuration &

•Performance Needs

•Physical

•Requirement

•Hardware
•Order

•Final

•Configuration

•Budget &

•Schedule•User
•Requirement

•User

•Developer

•User

•H/W

•Supplier

•Prog

•Mgmnt

•Design

•Repository
•Program

•Specifications

•1.

•Survey

•2.

•Analysis

•3.

•Prelim

•Design

•4.

•Hardware

•Study

•5.

•Detailed

•Design

•Feasibility

•Document

•User

•Requirement
•Functional

•Specification

•System
•Specification

•Configuration &

•Performance Needs

•Physical

•Requirement

•Hardware
•Order

•Final

•Configuration

•Budget &

•Schedule•User
•Requirement

•User

•Developer

•User

•H/W

•Supplier

•Prog

•Mgmnt

•Design

•Repository

• Primarily DFD
• Some Control, No

Control Constructs

IDEF0 Diagram
Function Flow Block Diagram
• Only Control Constructs
• No Data Triggering

• Equivalent to DFD
N2 Chart

•Not In Inventory

•In Inventory

•OK

•Deficiencies

•1

•Accept And Format
•Request

•2

•Check Product
•Inventory

•3

•Prioritize Request

•4

•Determine Collector
•Mix

•AND

•5

•Notify User Of
•Estimated
•Schedule

•6

•Task Collectors

•AND

•7

•Accept And Format
•Collector Products

•8

•Put Product In
•Inventory

•OR

•9

•Get Product From
•Inventory

•AND

•10

•Provide Product To
•User

•11

•Evaluate Products
•vs. Request

•12

•Report Deficiencies
•And

•Recommendations

•OR

•AND

•formatted
•request

•Information
•request

•priority of
•request

•collector mix

•estimated
•delivery
•schedule

•collector
•tasking

•collector
•products

•inventory
•request

•collection
•products

•deficiency
•report

EFFBD (CORE) BD (DCDS)

EFFBD / Behavior Diagrams
• Provide Both Data Triggering and Control Constructs
• Balance Depends on Needs and Analyst
• Diagram is Executable

• Equivalent to DFD
Use Case

• Message Flows
Sequence Diagram

•External Output

•External Input

•Data 3

•Data 5

•Data 4

•Data 3

•Data 2•Data 2

•Data 1

•Component 2 •Component 3•Component 1

•1

•Serial Function

•2

•Multi-exit
•Function

•4
•Function in
•Multi-exit
•Construct

•5

•Function in
•Iterate

•3

•Function in
•Concurrency

•6

•Output Function

•External
•Output

•External
•Input

•1

•Serial Function •Data 1

•2

•Multi-exit
•Function

•Data 2

•4

•Function in
•Multi-exit
•Construct

•Data 2

•5

•Function in
•Iterate

•Data 3

•Data 3

•3

•Function in
•Concurrency

•Data 5

•Data 4

•6

•Output Function

Dynamic Timelines

Behavior Characteristics Spectrum
• More complex control

• Less data triggering

• Less control complexity

• More data triggering

Not In

In

Ref.

3

Prioritize Request AND

4

Determine
Collector Mix

2

Check Product
Inventory

LP

7

Accept And
Format

Collector Products

LP

OR

AND

5

Notify User Of
Estimated
Schedule

6

Task Collectors

AND

AND

9

Get Product
From Inventory

Ref.

Presented at INCOSE 2010 Symposium Slide 30

Applying an MBSE Process

Presented at INCOSE 2010 Symposium

Model-Based Systems Engineering
Activities Timeline – Top Down

Activity bars represent movement of “center of gravity”
of systems engineering team.

Concurrent engineering is assumed.

5. Derive Integrated System Behavior

6. Derive Component Hierarchy

0. Define Need &
System Concept

1. Capture & Analyze
Orig. Requirements

2. Define System Boundary

4. Derive System
Threads

3. Capture Originating
Architecture Constraints

11. Define Resources, Error Detection, & Recovery Behavior

12. Develop Validation Requirements/Validation Plans

9. Select Design

13. Generate Documentation and Specifications

7. Allocate Behavior to
Components

8. Define Internal
Interfaces

10. Perform Effectiveness & Feasibility Analyses

SCHEDULE

Presented at INCOSE 2010 Symposium Slide 32

Model-Based System Engineering
Activities Timeline – Reverse Engineering

7a. Modify Reqts &
Arch. Constraints

1.Define System Boundary

7. Derive As-Built
System Reqts

5. Aggregate to As-Built
System Behavior

4. Derive As-Built Behavior
of Components

3. Capture Component
Hierarchy

2. Capture Interfaces

6. Derive As-Built
System Threads

11. Capture Error Detection, Resource, & Recovery Behavior

12. Develop Test Plans

9. Select Design

13. Generate Documentation and Specifications

10. Perform Effectiveness & Feasibility Analyses

6a. Modify System
Threads

5a. Modify & Decompose
System Behavior

4a. Allocate Behavior
to Components
3a. Refine Component
Hierarchy

2a. Define
Interfaces

8. Update
System BoundaryFind the top, Then modify

top-down.

SCHEDULE

Presented at INCOSE 2010 Symposium Slide 33

MBSE – the Onion Model
Doing Systems Engineering in Increments/Layers

Do It In
Layers

Primary Concurrent Engineering Activities At Each Layer

Layer 1
(Draft 1)

Layer 2
(Draft 2)

Layer n
(Final Specs.)

and
and

Behavior
Analysis

Synthesis/
Architecture

Design
V & V

System Design Repository Specification & Report Generation

Iterate as required When layer completed

Iterate as required When layer completed

Behavior
Analysis

Synthesis/
Architecture

Design
V & V

System Design Repository Specification & Report Generation

Behavior
Analysis

Synthesis/
Architecture

Design
V & V

System Design Repository Specification & Report Generation

Top-
level

Reqts.

Next-
level

Reqts.

Next-
level

Reqts.

Must complete a layer before moving to the next layer (completeness)
Cannot iterate back more than one layer (convergence)

Initial Requirements
for this layer are
embodied in the

model passed from
the prior layer

Initial Requirements
for this layer are
embodied in the

model passed from
the prior layer

Originating
Requirements

Analysis

Source
Documents

Presented at INCOSE 2010 Symposium Slide 34

Concurrent Engineering Enables “Design It In”
Don’t Try to Test It In, Review It In, Annotate It In …

Presented at INCOSE 2010 Symposium

Customer

Chief Engineer

Hardware

Software

Safety

Reliability, Availability,
Maintainability

Manufacturability

SecurityTest

Logistics

Maintenance

Operations

Environmental

Training & Personnel

Publications

Program Mgt.

Configuration
Management

Systems Engineer

Outer ring
represents

domain
experts

“It”:
Complete
Consistent
Correct
Implementable
Current
…….

System
Design

Repository

Slide 35

The Image Management System (IMS)
Overview

Image Management System

Customers

Image
Collectors

Customer
Link

Image
Collector Link

Presented at INCOSE 2010 Symposium Slide 36

Essential Tasks Before You Start
Development Activities

• Plan the activity.
– Prepare a Systems Engineering Management Plan

(e.g., SEMP).
– Tailor the plan to your project.

• Make sure you assign responsibility.
– Define the (group of) people who retain authority

over the system requirements, behavior,
architecture, interfaces, and test and integration
plan.

Presented at INCOSE 2010 Symposium Slide 37

A Process for Engineering
the Image Management System

• Define the system
• Capture originating requirements

– Evaluate a source document
– Extract requirements

• Define the system boundary
• Define the system behavior and physical

architecture
• Allocate the behavior to the physical

components

Presented at INCOSE 2010 Symposium Slide 38

Capture the Originating Requirements
“Making Sure That We Solve the Right Problem”

• Start by extracting the first-level requirements
from the source document(s) in order to gain an
understanding of the top-level context of the
system.

• Next capture the “children” of the first-level
requirements, creating Issues as required.

• The objective is to continue the hierarchy of
extracting “children” until each leaf-level
requirement is a single, verifiable statement.

Presented at INCOSE 2010 Symposium Slide 39

Candidate Source Documents

• System Concept
Paper

• Executive Order
• Concept of

Operations
• Statement of Work
• Vendor

Package/Contract
• Preliminary

Specification
• Change Request

• Trade Study Report
• Standards (MIL-STD

or Commercial)
• Meeting Minutes’
• Business Plan
• Market Analysis

Presented at INCOSE 2010 Symposium MBSE4b - 40

Capturing the System Requirements

Presented at INCOSE 2010 Symposium Slide 41

The Requirements Capture Approach

Presented at INCOSE 2010 Symposium Slide 42

• Get the leaf nodes – the
requirements in single,
verifiable statements.

• Record source requirement
statement in the Description
attribute of a Requirement.

• Obtain traceability between
source and first level
Requirements with
documents/documented by
relationships.

• Obtain traceability between
parent/child Requirements
with the refines/refined by
relationships.

Leaf node Requirements trace to
other elements

documents

refined by

refined by

refined by

Source
Document

Parent
Requirements

Child
Requirements

System

documented by

X

Issues

• During the requirements capture and analysis
process, it is likely that problems will be found
– Requirements are not clear or complete
– Requirements may contradict each other
– Requirements may be over or under specified

• It is highly desirable to have a mechanism to
capture these issues, as well as the subsequent
resolution of the issue and supporting
documentation

• This is accomplished using Issue elements

Presented at INCOSE 2010 Symposium Slide 43

Risk

• Defined as the uncertainly of attaining or
achieving a product or program milestone

• May exist for several reasons
– Budget or schedule constraints
– High or leading edge technology
– New designs or design concepts
– Criticality to the user/customer

• We capture this information by using the Risk
element

Presented at INCOSE 2010 Symposium Slide 44

Puts a
boundary on
the system
problem so we
don’t add
something that
is not intended
or needed

Image
Management

System

Customers Collectors

Physical Context

The System Physical Boundary

• Referred to as the system “Physical Context”
• Defines all external systems to which our system must

interface and the mechanism(s) for interfacing
• Provides a structure into which behavior can be

partitioned and data assigned to interfaces

Presented at INCOSE 2010 Symposium Slide 45

System Behavior

• Shows what a system does or appears to do
without regard to how (implementation) it does it

• Is represented graphically by a model which
integrates the control (functions and constructs)
model and the interface (inputs and outputs)
model

Presented at INCOSE 2010 Symposium

Behavior is essential for providing the complete systems
engineering model of any system or process.

Slide 46

The Many Faces of Behavior

Presented at INCOSE 2010 Symposium

Property
Sheet

EFFBD or Activity Diagram
Complete and Executable

N2 Diagram
Lacks constructs

FFBD Lacks data

Sequence Diagram
Lacks

structure

IDEF0 Lacks constructs

Slide 47

Identifying Use Cases

• Derived from system context, operational
concept, and requirements

• Should include
– Preconditions
– Primary flow
– Alternate flow(s)
– Post-conditions

• Elaborated by system threads or system
behavior

Presented at INCOSE 2010 Symposium Slide 48

Use Case Relationships

• Use cases use relationships to describe their
place and role in the system
– Communication: the external “actors” interact with

the system through communication
– Include: this relationship allows use cases to reuse

functionality from the base use cases
– Extend: under certain specified conditions one use

case may extend the functionality of another
– Generalization: allows for the description of variants

on a base use case

Presented at INCOSE 2010 Symposium Slide 49

Threads Offer Insight Into How the System
Must Respond to Its Stimuli

• Definition: A thread is a single stimulus/response
behavior path through a system

• Threads give us insight on what the system must do
(functions) to respond to different classes of system
stimuli to produce desired outputs and behavior

• Thread derivation is a discovery process
• Thread derivation also validates completeness of the

functional source requirements

Presented at INCOSE 2010 Symposium

Activity Diagram

Slide 50

From Threads to Integrated Behavior
or Operational Architecture

• Define distinct classes of threads based on system I/O
• Start with one simple thread per class of system input
• Preserve each thread (for thread testing, concept of

operations, etc.)

Presented at INCOSE 2010 Symposium

1. Derive Threads

2. Integrate Threads to Define
Integrated System Behavior

Slide 51

Conditions for a Function to Execute

• Execution
– Before a Function can begin execution it must be enabled and

triggered, if a trigger is defined
• Enablement

– Enablement is a control concept
– A Function is enabled upon completion of the Function prior

to it in the construct
• Triggers

– A Trigger is an Item that also provides a control role
– Trigger is defined by a relationship (triggers)
– Triggers are shown with a double arrowhead

• Data Stores
– A Data Store is an Item that does not provide a control role
– Data store is defined by a relationship (input to)
– Data stores are shown with a single arrowhead

Presented at INCOSE 2010 Symposium Slide 52

Key Concepts of Systems Engineering

• Design is done by “allocation”
of functions and performance
onto the components, then
interface design.

• Design is then analyzed by all
“disciplines” and iterated

Ref: DCDS Documentation

SYSTEM

sub-system 3

sub-
system 1

sub-
system 2System’s behavior is

described as a “black box”
to identify conditional
process flow and
performance

Presented at INCOSE 2010 Symposium Slide 53

Relating the Functional and Physical Models

allocated to (performs)

allocated to (performs)

Physical
Context

Image
Management
System

Customers Collectors

Functional
Context

Perform
Customer
Functions

Perform
Collector
Functions

Operate Image
Management
System

Workstation Command
CenterFunction A Function N

Physical HierarchyFunctional Hierarchy

decomposed by built from

…

allocated to (performs)

Presented at INCOSE 2010 Symposium Slide 54

Decomposition – The Problem

• We have stated that decomposition is the
reverse of aggregation. We have not defined
what properties must be preserved under
decomposition.

• How do we go from the top down? i.e., what
must be true to say that a function is
decomposed by a graph of functions?

• Is decomposition unique?
– Remember we use the black box approach

Presented at INCOSE 2010 Symposium Slide 55

Why Aggregate?

Most engineers start with too much detail
• Enhance understanding

– See the “big picture”
– Simplify the look of a graph

• Encapsulate complex logic sequences into
larger building blocks
– Hide information

Presented at INCOSE 2010 Symposium Slide 56

Allocation of Behavior to the System’s
Internal Components

• Inside the system boundary, the deliverable system
consists of a collection of cooperating component parts
with a common goal.

• The allocation process partitions the system-level
conceptual behavior among the system’s internal
component parts.

• Must preserve the specified system behavior during the
allocation process (functional/performance behavior).

• Perform trial allocations to determine the best
partitioning such that
– Behavior is preserved, and
– Interfaces are not too complex to build

Ref.: DCDS Documentation

Presented at INCOSE 2010 Symposium Slide 57

Allocation Implications

• Moves the design
– From abstract to concrete
– From logical to top-level physical

• Creates basis for interface design
• Precipitates consideration of physical

implications:
– Physical limitations (e.g., weight, size, heat)
– Resource constraints
– Failure detection and recovery
– Manufacturability
– Maintainability

Ref.: DCDS Documentation

Presented at INCOSE 2010 Symposium Slide 58

Analyzing Message Flows and
Sequencing between Components

Sequence diagrams focus on
triggering information between

activities on lifelines to help you
understand the way the activity

interacts with the greater system.

Presented at INCOSE 2010 Symposium Slide 59

Allocating the System Functions

The Components will perform the Functions that are allocated to them.

Allocated to Command
Center Subsystem

Allocated to Workstation
Subsystem

Presented at INCOSE 2010 Symposium Slide 60

Capturing the Interfaces

Presented at INCOSE 2010 Symposium

Interfaces:
• Logical
• Bi-directional

joins
(joined to)

Links:
• Physical
• Have capacity

Items:
• Have size

We have established
the Items that cross

the Interfaces by
allocating Functions

to Components

comprised of
(comprises)

transfers
(transferred by)

input to
(inputs)

triggers
(triggered by)

outputs
(output from)

allocated to
(performs)

allocated to
(performs)

Interface

Link

Component

Function

Item

Component

Function

Component

Slide 61

System Physical Block Diagram

Presented at INCOSE 2010 Symposium Slide 62

Failure Modes and Effects Analysis

For each component and interface determine:
• Requirements and performance indices
• Potential failure modes

– Probability of each
– Avoidance approaches
– Detection strategies
– Recovery strategies

• Feasible to continue in spite of failure?
• Feasible to resume normal behavior after replacement, repair, or

end of intermittent failure?

• Impact of avoidance and/or detection and recovery
– In high reliability systems this may be the majority of the system

behavior

Ref.: DCDS Documentation

Presented at INCOSE 2010 Symposium Slide 63

The Discrete Event Simulator Supports
Analysis and Design at All Levels

• Dynamic analysis
– Assesses dynamic consistency/ executability of “system

behavior”
• Timeline analysis

– Establishes and analyzes integrated behavior timelines
• Resource analysis

– Monitors the amounts and dynamics of system resources:
e.g., People, computer MIPS, memory, supplies, power,
radar pulses, # of interceptors, # of cooked hamburgers, ...

• Flow analysis
– What happens to system operation when items of finite

size are carried by links of finite capacity?

Presented at INCOSE 2010 Symposium Slide 64

The Executed Behavior Confirms System
Logic and Supports Trade Studies

Presented at INCOSE 2010 Symposium Slide 65

Architectures and DoDAF –
A More Complete Schematic

implemented by

implemented by

achieves

Architecture composed ofcomposed of

Operational
Architecture

Domain

NeedLine

transfers

decomposed by

Operational
Item

decomposed by

exits by

inputs / outputs /
triggered by

captures /
consumes /

produces

performs

connected to /
thru

guides

Selected
Classes

achieves

built from Performer

System
Architecture

Domain

Interface

Link

transfers

decomposed by

Item decomposed by

inputs / outputs /
triggered by

captures /
consumes /
produces

performs

connected to /
thru

Exit

Resource

implemented by

implemented by
built fromComponent

exits by

comprised of

responsible for

Selected Classes

Organization includes

includes

Guidance

achieves

governs

Selected
Classes

includes
Standard

Operational
Task

includes

Mission
includes

Exchange
Characteristic

joins &
joins thru

exhibits

exhibits

Exchange
Characteristic

exhibits

exhibits

Interface
Element

Requirement
Element

Physical
Element

Functional
Element

Color Code

Service
Specification

documented by

Requirement

refined by

Selected
Classes

basis of specifies

refined by

Capability

basis of

implemented by

FunctionOperational
Activity

Presented at INCOSE 2010 Symposium Slide 66

Service Oriented Architecture
(SOA)

Pre-SOA Configuration

Presented at INCOSE 2010 Symposium

PROCESS

Slide 68

Pre-SOA Configuration

Presented at INCOSE 2010 Symposium

SERVICE CONSUMERS

SERVICES

Slide 69

Pre-SOA Configuration

Presented at INCOSE 2010 Symposium

SERVICE CONSUMERS

SERVICES

Slide 70

SOA Basics

Presented at INCOSE 2010 Symposium

Process (Orchestration) Layer

Slide 71

SOA Basics

Presented at INCOSE 2010 Symposium

Services Layer
Slide 72

SOA Basics

Presented at INCOSE 2010 Symposium

Enterprise Service Bus

Slide 73

SOA Basics

Presented at INCOSE 2010 Symposium

Metrics Points

Slide 74

SOA Basics

Presented at INCOSE 2010 Symposium

Metrics Points

Unified Views

Slide 75

Power of MBSE for SOA

• Process drives the architecture
• Services are derived coherently
• Metrics are meaningful
• Views serve the functional roles

Presented at INCOSE 2010 Symposium Slide 76

DoDAF 2.0 and a MBSE
Roadmap for Generating

Architectures

Presented at INCOSE 2010 Symposium

What is an Architecture?

Architectures are a primary tool for enterprise-level systems
integration.

DoD Architecture Framework, Version 1.0, (09 February 2004) Volume 1, p. 1-5

An architecture is the fundamental organization of a system
embodied in its components, their relationships to each
other, and to the environment and the principles guiding its
design and evolution.

IEEE STD 1472 (2000)

[Architecture] is the set of design decisions which, if made
incorrectly, may cause your project to be canceled.

Eoin Woods

Presented at INCOSE 2010 Symposium Slide 78

Architectures in Context

Reprinted from 2006 Federal Enterprise Architecture Practice Guidance, US OMB

Presented at INCOSE 2010 Symposium Slide 79

Integrated and Federated Architectures

Integrated Architecture
 An architecture where architecture data

elements are uniquely identified and
consistently used across all products and
views within the architecture.

Federated Architecture
 Provides a framework for enterprise

architecture development, maintenance, and
use that aligns, locates, and links disparate
architectures via information exchange
standards (i.e., taxonomies).

DISR Service Area Service DISR Standard and
Source Document

Information-Processing Standards Higher Order Languages
 Software Life-Cycle Process
 Geospatial Data Interchange
 Motion Imagery Data Interchange - Video
 Distributed-Object Computing
Information-Transfer Standards Data Flow Network
 Command and Control Information (C2I) Network
 Physical Layer
 Network Interface
 Layer Management
 File Transfer Standards
 Remote Terminal Standards
 Network Time Synchronization Standards
 Web Services Standards
 Connectionless Data Transfer
 Transport Services Standards
Information Modeling, Metadata, and
Information Exchange Standards

Activity Modeling

 Data Modeling
 Object-Oriented Modeling
Human Computer Interface Mandates
Information Security / Information
Infrastructure Standards

Password Security

 Application Software Entity Security Standards
 Virtual Private Network Service
 Intrusion Detection Service
 Human-Computer Interface Security Standards

Service 1

Service 3

Service 2

Service 4

External System 1

Data Flow 1

Data Flow 2

Data
Flow 3

External Service 1 Data Flow 4 External Portal 1

Data
Flow 5

Data
Flow 6

Data
Flow 7

Data
Flow 8

Data Flow 9

Flow 1

Flow 2

Flow 3

Flow 4

A1
Activity 1

A2
Activity 2

A3
Activity 3

Flow 1

Flow 2

Flow 3

Flow 4

A1
Activity 1

A2
Activity 2

A3
Activity 3

Flow 1

Flow 2

Flow 3

Flow 4

A1
Activity 1

A2
Activity 2

A3
Activity 3

TV-1

OV-5

SV-5c

SV-4b

Operational
Activity X

Service
Functionality Y

Service Z

EA Reference Model Taxonomy

WMA* BMA* IMA* EIEMA*

Service Agency COCOM

Managed by MA Authority

Is part of Is equal to

Subordinate architectures mapped to MA-level by C/S/As

Integrated Architecture
 An architecture where architecture data

elements are uniquely identified and
consistently used across all products and
views within the architecture.

Federated Architecture
 Provides a framework for enterprise

architecture development, maintenance, and
use that aligns, locates, and links disparate
architectures via information exchange
standards (i.e., taxonomies).

DISR Service Area Service DISR Standard and
Source Document

Information-Processing Standards Higher Order Languages
 Software Life-Cycle Process
 Geospatial Data Interchange
 Motion Imagery Data Interchange - Video
 Distributed-Object Computing
Information-Transfer Standards Data Flow Network
 Command and Control Information (C2I) Network
 Physical Layer
 Network Interface
 Layer Management
 File Transfer Standards
 Remote Terminal Standards
 Network Time Synchronization Standards
 Web Services Standards
 Connectionless Data Transfer
 Transport Services Standards
Information Modeling, Metadata, and
Information Exchange Standards

Activity Modeling

 Data Modeling
 Object-Oriented Modeling
Human Computer Interface Mandates
Information Security / Information
Infrastructure Standards

Password Security

 Application Software Entity Security Standards
 Virtual Private Network Service
 Intrusion Detection Service
 Human-Computer Interface Security Standards

Service 1

Service 3

Service 2

Service 4

External System 1

Data Flow 1

Data Flow 2

Data
Flow 3

External Service 1 Data Flow 4 External Portal 1

Data
Flow 5

Data
Flow 6

Data
Flow 7

Data
Flow 8

Data Flow 9

Flow 1

Flow 2

Flow 3

Flow 4

A1
Activity 1

A2
Activity 2

A3
Activity 3

Flow 1

Flow 2

Flow 3

Flow 4

A1
Activity 1

A2
Activity 2

A3
Activity 3

Flow 1

Flow 2

Flow 3

Flow 4

A1
Activity 1

A2
Activity 2

A3
Activity 3

TV-1

OV-5

SV-5c

SV-4b

Operational
Activity X

Service
Functionality Y

Service Z

EA Reference Model Taxonomy

WMA* BMA* IMA* EIEMA*

Service Agency COCOM

Managed by MA Authority

Is part of Is equal to

Subordinate architectures mapped to MA-level by C/S/As

Presented at INCOSE 2010 Symposium Slide 80

From Architectures to a Framework:
Why is a Framework Needed?

Disparate and unrelatable architecture products lead to
non-integrated, non-interoperable, and non-cost effective

capabilities in the field

Differences in content and formats inhibit comparison of
architectures

Organizations are developing major systems that
need to interface and interact

CINCs Services Agencies

Army
Navy

Air Force
Marines NIMA DISADLA

Reprinted from “C4ISR INCOSE Tutorial”, A.H. Levis and L.W.Wagenhals, March 2001

Presented at INCOSE 2010 Symposium Slide 81

DoDAF Evolution To Support
“Fit For Purpose” Architecture

(Published in 2003)

(Published in 2007)

DoDAF 1.5
• Addresses Net-Centricity
• Volume III is CADM & Architecture

Data Strategy
• Addresses Architecture Federation
• Baseline for DoDAF 2.0
• Shifted away from DoDAF

mandating a set of products

DoDAF 1.0
• CADM Separate
• Baseline For DoDAF 1.5
• Removed Essential & Supporting

Designations
• Expanded audience to all of DoD

(Published in 2009)

DoDAF 2.0
• Cover Enterprise and

Program Architecture
• Emphasize Data versus

Products
• Tailored Presentation
• DM2 PES

Presented at INCOSE 2010 Symposium Slide 82

DoDAF 2.0: A Marked Expansion

Data &

Information

View

OV-7

Services

View

SV-11

All “Service”
Versions of
SV Products

Systems

View

All “Systems”
Versions of
SV Products

DoDAF V1.5

Capability

View

Project

View

System

Engineering

View

Standards

View

Operational

View

Rest of OVs

All TVs

All

View
All AVs

DoDAF V2.0

NewUpdated Moved DoDAF Metamodel (DM2)

Fit For
Purpose

PresentationDashboards Graphical
Depictions

Reference
Models

Fusion
Products

Composite
Products

Presented at INCOSE 2010 Symposium Slide 83

DoDAF 2.0: A Marked Departure

• Movement from a product-centric approach to a
data-centric approach
– Provide decision-making data organized as information for

the manager/executive
• Architecture development as a management tool

– Support the decision-making process of the executive as
process owner

– Ensure a particular process or program
• Works efficiently
• Complies with legal and departmental requirements
• Serves the purpose for which it was created

• Viewpoint selection by the process-owner based
upon “fit-for-purpose”
– Choose the viewpoints that accomplish the objective

Presented at INCOSE 2010 Symposium Slide 84

A Data-Centric Approach Supporting
“Fit for Purpose” Views

Presented at INCOSE 2010 Symposium Slide 85

DoDAF 2.0 Model, View,
and Viewpoint Concepts

• Model – a template for collecting data
• View – a representation of a related set of

information using formats or models
– Dashboards
– Spreadsheets
– Diagrams
– Data models
– Any presentation style that conveys the meaning of

the data

The architect translates the decision-maker’s requirements into a set of data
that can be used by engineers to design possible solutions.

Presented at INCOSE 2010 Symposium Slide 86

DoDAF 2.0 Model, View,
and Viewpoint Concepts, cont.

• Viewpoint – one or more organizing
perspectives for data useful for supporting
management decision-making, including
– The information appearing in individual views
– How to construct and use the views (by means of an

appropriate schema or template)
– The modeling techniques for expressing and

analyzing the information
– A rationale for these choices (e.g., by describing the

purpose and intended audience of the view)

Architecture Description:
• a collection of products to document an architecture (ISO 42010)
• a collection of views to document an architecture (DoDAF 2.0)

Presented at INCOSE 2010 Symposium Slide 87

DoDAF 2.0 Viewpoints

Presented at INCOSE 2010 Symposium Slide 88

Envisioning Architecture Scope

Presented at INCOSE 2010 Symposium Slide 89

Communication Mismatch: Manager,
Architect, and Domain Experts

Process
Interview

Process
Name:
Owner:

Presented at INCOSE 2010 Symposium Slide 90

Challenges in Satisfyting
the Intent of DoDAF

• Delivery of DoDAF views does not guarantee a
complete, consistent solution
– A complete set of DoDAF views does not necessarily meet

the goals of DoDAF (particularly prior to DoDAF 2.0)
– Ambiguities remain from original product focus
– A critical original intent (comparisons of architecture cost,

schedule, and traceability) remains unfulfilled
• Confusion surrounding architecture development

– Views must be consistent
• False assumptions (ex., UML is the standard for

DoDAF)
• Continued evolution of DoDAF

– From product focus to data-centric
– Interest in integrated, executable architectures growing

Presented at INCOSE 2010 Symposium Slide 91

Solution: Make Your DoDAF Efforts Part of
the Greater Architecture / SE Effort

• Leverage a defined systems engineering
process with quality automated tools
– Integrated schema/language/repository

• Model the operations domain as well as the
systems domain

• Generate DoDAF views as intentional
byproducts of the architecture / systems
engineering effort
– Reinforced by “fit for purpose” direction of DoDAF 2.0

• Maintain traceability of integrated operations
modeling to system engineering modeling to
DoDAF views

Presented at INCOSE 2010 Symposium Slide 92

An Integrated Environment Resolves the
Data and Semantic Interface Problems

Implementation of integrated DoDAF and system engineering
processes provides:
• A repeatable and proven model-based systems engineering

methodology
• Integrated models for

– technical,
– operational, and
– system architectures

• A graphical notation to enhance capture and representation for
– communication and
– evaluation of candidate architectures

• Executable models (simulation) for behavioral and performance
analysis

• Consistent DoDAF products produced directly from the system
design repository
– Support for the product life cycle
– Significant savings in cost and schedule

Presented at INCOSE 2010 Symposium Slide 93

A Model-Based
Systems Engineering Schema

System
Architecture

Domain

Interface

Link

transfers

Function
decomposed by

Item decomposed by

inputs / outputs /
triggered by

captures /
consumes /
produces

performs

connected to /
thru

Exit

Resource

implemented by

built fromComponent

exits by

comprised of

responsible for

Selected Classes

Organization includes

specifies
Requirement

refined by

Selected
Classes

governs

Selected
Classes

includes
Standard

Exchange
Characteristic

joins &
joins thru

exhibits

exhibits

basis of

Interface
Element

Requirement
Element

Physical
Element

Functional
Element

Color Code

specifies

Service
Specification

documented by

Presented at INCOSE 2010 Symposium Slide 94

DoDAF 2.0 Schema:
System and Operational Architectures

implemented by

implemented by

achieves

Architecture composed ofcomposed of

Operational
Architecture

Domain

NeedLine

transfers

decomposed by

Operational
Item

decomposed by

exits by

inputs / outputs /
triggered by

captures /
consumes /

produces

performs

connected to /
thru

guides

Selected
Classes

achieves

built from Performer

System
Architecture

Domain

Interface

Link

transfers

decomposed by

Item decomposed by

inputs / outputs /
triggered by

captures /
consumes /
produces

performs

connected to /
thru

Exit

Resource

implemented by

implemented by
built fromComponent

exits by

comprised of

responsible for

Selected Classes

Organization includes

includes

Guidance

achieves

governs

Selected
Classes

includes
Standard

Operational
Task

includes

Mission
includes

Exchange
Characteristic

joins &
joins thru

exhibits

exhibits

Exchange
Characteristic

exhibits

exhibits

Interface
Element

Requirement
Element

Physical
Element

Functional
Element

Color Code

Service
Specification

documented by

DoDAF 2.0 changes denoted in bold red

Requirement

refined by

Selected
Classes

basis of specifies

refined by

Capability

basis of

implemented by

FunctionOperational
Activity

Presented at INCOSE 2010 Symposium Slide 95

DoDAF 2.0 Schema:
Capturing the Program Dimension

achieves

Architecture
composed of

composed of
Operational
Architecture

Domain

decomposed by

exits by
captures /

consumes /
produces

achieves

built from Performer

System
Architecture

Domain

decomposed by
captures /
consumes /
produces

Exit

Resource

implemented by

implemented by built fromComponent

exits by

responsible for

Selected Classes

Organization includesOperational
Task

includes

Mission
includes

Interface
Element

Requirement
Element

Physical
Element

Functional
Element

Color Code

Program
Management

Domain
includes

Program
Element

causes Selected
Classes

Risk

decomposed by

Program
Activity

supplies

causes /
resolves

causes /
resolves

decomposed by
Product

inputs /
outputs /
triggered by

supplies

implemented by

accomplishes

exits by

captures /
consumes /
produces

Requirement
refined by

Selected
Classes

basis of specifies

refined by
Capability

basis of

performs
performs

implemented by

FunctionOperational
Activity

Presented at INCOSE 2010 Symposium Slide 96

Relationship between
OV and SV Generation

• Provides top level Functional
Requirements as output

• Individual or groups of
requirements may be allocated
to different systems (SOS)

• One, two layers tops
• “Implemented By” relationships

between lowest level of OV’s and
top level of SV’s

Operational Analysis/Operational View

Systems Design/Systems View

Layer 1
(Draft 1)

Iterate
as required

When layer
completed

Iterate
as required

When layer
completed

Iterate
as required

When layer
completed

Initial Requirements
for this layer

embodied in model
and

and

Initial Requirements
for this layer

embodied in model

Initial Requirements
for this layer

embodied in model

and
and

Presented at INCOSE 2010 Symposium Slide 97

Model-Based Systems Engineering
Activities Timeline – Top Down

Activity bars represent movement of “center of gravity”
of systems engineering team.

Concurrent engineering is assumed.

5. Derive Integrated System Behavior

6. Derive Component Hierarchy

0. Define Need &
System Concept

1. Capture & Analyze
Orig. Requirements

2. Define System Boundary

4. Derive System
Threads

3. Capture Originating
Architecture Constraints

11. Define Resources, Error Detection, & Recovery Behavior

12. Develop Validation Requirements/Validation Plans

9. Select Design

13. Generate Documentation and Specifications

7. Allocate Behavior to
Components

8. Define Internal
Interfaces

10. Perform Effectiveness & Feasibility Analyses

SCHEDULE

Presented at INCOSE 2010 Symposium Slide 98

5. Develop Operational Context Diagram

15. Conduct Trade-off Analyses

12. Perform Dynamic Analysis
14. Provide Options

10. Prepare I/F Diagrams
9. Allocate Functions to System Elements

3. Identify Existing / Planned Systems

8. Derive System Elements

11. Define Resources, Error Detect & Recovery

7. Derive Functional Behavior
6. Develop Operational Scenarios

13. Develop Operational Demonstration Master
Plan

4. Capture Constraints

2. Identify Assumptions
1. Capture and Analyze Related Documents

Traditional DoDAF Views within the
Systems Development Timeline

AV-1

AV-2

OV-1
OV-2

OV-3

OV-4

OV-5

OV-6

OV-7

SV-1

SV-2
SV-3

SV-4

SV-5SV-6

SV-7

SV-8 SV-9

SV-10

SV-11
TV-1 TV-2

System
Analysis &

Control

Requirements
Analysis

Synthesis

Behavior
Analysis

Color Code

16. Generate Operational and System Architecture Views, Briefings, and Reports

Presented at INCOSE 2010 Symposium Slide 99

MBSE in Practice:
Developing a

System of Systems

Source documents and graphics from
publicly available sources where indicated

Presented at INCOSE 2010 Symposium

What is a System?

• A system can be broadly defined as an integrated
set of elements that accomplish a defined objective.
(INCOSE SE Handbook - 2004)

• An integrated composite of people, products, and
processes that provide a capability to satisfy a
stated need or objective. (EIA/IS-632 - 1994)

• A set or arrangement of elements (people, products
(hardware and software) and processes (facilities,
equipment, material, and procedures) that are
related and whose behavior satisfies
customer/operational needs, and provides for the
life cycle sustainment of the products. (IEEE-1220-
1998)

Presented at INCOSE 2010 Symposium Slide 101

What is a System of Systems (SoS)?

• A System of Systems is a system in which:
– System elements are predominantly systems in their

own right
– Individual operational threads involve multiple system

elements
– A SoS view emphasizes interoperability among the

elements
– A SoS will likely include systems from different

families
• e.g., SoS combining C4I and weapon systems

– The SoS architect defines the SoS structure, but may
not control the implementation of all system elements

Presented at INCOSE 2010 Symposium

Defense Acquisition University SoS Research Project Overview, 2003

Slide 102

Multiple Classes of SoS

• New: Systems comprising SoS do not currently
exist
– Use a traditional spiral or vee approach

• Integration: SoS integrates multiple existing
systems
– Use a reverse engineering approach

• Hybrid: SoS integrates a mix of existing and new
systems
– Use a top-down/bottom-up/middle-out systems

engineering approach

Presented at INCOSE 2010 Symposium Slide 103

Challenges Posed by SoS

• Insufficient effort and rigor in the requirements
and analysis phase given expanded scope

• Programmatic issues resulting from multiple
user, acquisition, and implementation teams

• Lack of centralized control over budgets and
resources

• Technical complexity at the interfaces
• Independently evolving system elements

resulting in shifting interfaces during the lifecycle
of the SoS

Presented at INCOSE 2010 Symposium Slide 104

A Definition of System
to Keep in Mind for SoS

Presented at INCOSE 2010 Symposium

a whole that cannot be divided into independent parts
without losing its essential characteristics as a whole.

It follows from this definition that, a system’s essential defining
properties are the product of the interactions of its parts, not

the actions of the parts considered separately.

Therefore, when a system is taken apart, or its parts are considered
independently of each other, the system loses its

essential properties.

Furthermore, when performance of each part taken separately is
improved, the performance of the system as a whole may not

be, and usually isn’t.
--Russell Ackoff

Slide 105

Stakeholder Requirements for the
Missile Defense System of Systems

• Protect the United States against limited ballistic
missile threats, including accidental or
unauthorized launches or Third World threats.

• The means to accomplish the mission are as
follows:
– Detect the launch of enemy ballistic missile(s) and

track.
– Continue tracking of ballistic missile(s) using ground

based radars.
– Engage and destroy the ballistic missile warhead

above the earth’s atmosphere by force of impact.

Presented at INCOSE 2010 Symposium

Source of document: Federation of American Scientists website, www.fas.org

Slide 106

MBSE – The Onion Model
for the SoS Example

Do It In
Layers

Primary Concurrent Engineering Activities At Each Layer

Layer 1
(Draft 1)

Layer 2
(Draft 2)

Layer n
(Final Specs.)

and
and

Behavior
Analysis

Synthesis/
Architecture

Design
V & V

System Design Repository Specification & Report Generation

Iterate as required When layer completed

Iterate as required When layer completed

Behavior
Analysis

Synthesis/
Architecture

Design
V & V

System Design Repository Specification & Report Generation

Behavior
Analysis

Synthesis/
Architecture

Design
V & V

System Design Repository Specification & Report Generation

Top-
level

Reqts.

Next-
level

Reqts.

Next-
level

Reqts.

Must complete a layer before moving to the next layer (completeness)
Cannot iterate back more than one layer (convergence)

Initial Requirements
for this layer are
embodied in the

model passed from
the prior layer

Initial Requirements
for this layer are
embodied in the

model passed from
the prior layer

Originating
Requirements

Analysis

Source
Documents

Presented at INCOSE 2010 Symposium Slide 107

Overview of the MBSE Process for this
Hybrid SoS

• Level 1: Define the SoS Mission
– Capture stakeholder requirements
– Develop SoS scenarios to discover required SoS basic functions
– Identify the candidate SoS operational elements/systems
– Define to-be interfaces

• Level 2: Continue definition of SoS and System Design
Repository
– Integrate scenarios to determine desired SoS to-be functional

architecture
– Capture the as-is system functions and interfaces resulting from

the candidate SoS elements/systems
– Identify the differences between the to-be SoS behavior and

interfaces and the aggregation of the existing SoS as-is
elements

• Level 3: Design to-be SoS elements and
modify/augment current SoS elements to achieve SoS
required capabilities

Presented at INCOSE 2010 Symposium Slide 108

LEVEL 1 of the Onion Model for this
SoS Example

Do It In
Layers

Primary Concurrent Engineering Activities At Each Layer

Layer 1
(Draft 1)

Layer 2
(Draft 2)

Layer n
(Final Specs.)

and
and

Behavior
Analysis

Synthesis/
Architecture

Design
V & V

System Design Repository Specification & Report Generation

Iterate as required When layer completed

Iterate as required When layer completed

Behavior
Analysis

Synthesis/
Architecture

Design
V & V

System Design Repository Specification & Report Generation

Behavior
Analysis

Synthesis/
Architecture

Design
V & V

System Design Repository Specification & Report Generation

Top-
level

Reqts.

Next-
level

Reqts.

Next-
level

Reqts.

Must complete a layer before moving to the next layer (completeness)
Cannot iterate back more than one layer (convergence)

Initial Requirements
for this layer are
embodied in the

model passed from
the prior layer

Initial Requirements
for this layer are
embodied in the

model passed from
the prior layer

Originating
Requirements

Analysis

Source
Documents

Level 1: Define the SoS Mission
• Capture stakeholder requirements
• Develop SoS scenarios to discover required SoS basic

functions
• Identify the candidate SoS operational

elements/systems
• Define to-be interfaces

Presented at INCOSE 2010 Symposium Slide 109

SoS Source Document and Requirements are
Extracted and Shown in Traceability Hierarchy

Presented at INCOSE 2010 Symposium

Source of document: Federation of American Scientists website, www.fas.org

Slide 110

Details of the SoS Source Requirements,
Showing Relationships and Attributes

Number & Name Description documented by incorporated in incorporates
OR.1 Provide ABM defense
for the US

Protect the United States against limited
ballistic missile threats, including
accidental or unauthorized launches or
Third World threats.

The means to accomplish the NMD
mission are:
(1) Detect the launch of enemy ballistic
missile(s) and track.
(2) Continue tracking of ballistic
missile(s) using ground based radars.
(3) Engage and destroy the ballistic
missile warhead above the earth’s
atmosphere by force of impact.

SD.1 NMD Description
Document by Federation of
American Scientists (FAS)

 OR.1.1 Detect and track
OR.1.2 Track with GBR
OR.1.3 Engage and destroy
warhead

OR.1.1 Detect and track Detect the launch of enemy ballistic
missile(s) and track.

 OR.1 Provide ABM defense for
the US

OR.1.2 Track with GBR Continue tracking of ballistic missile(s)
using ground based radars.

 OR.1 Provide ABM defense for
the US

OR.1.3 Engage and destroy
warhead

Engage and destroy the ballistic missile
warhead above the earth’s atmosphere
by force of impact.

 OR.1 Provide ABM defense for
the US

Presented at INCOSE 2010 Symposium Slide 111

Operational Scenario Provides the Basis for
Defining the Top Level System Functions

Presented at INCOSE 2010 Symposium

Source of graphic: Boeing website, www.boeing.com

Slide 112

Scenario 1: Provide Basic SoS
Functions

Presented at INCOSE 2010 Symposium Slide 113

Make-or-Buy Decisions

• During system design/development, always look
for implementation alternatives

• Therefore, at each level of decomposition, look
for existing implementation to satisfy needs
– If system element is directed by stakeholder

requirement, design to incorporate it
– If a satisfactory implementation is available, design to

incorporate it
– Otherwise, complete design at this level, and

• Continue to the next level

Presented at INCOSE 2010 Symposium Slide 114

Pre-existing System Elements:
What Do You Get?

• Two features that are pre-defined
– Physical interfaces
– Behavior (stimulus-response characteristics)

• Restriction/constraint
– Your system must be designed to match these

features
• Future element releases/upgrades

– That you may not influence

Presented at INCOSE 2010 Symposium Slide 115

Considerations in
Make-or-Buy Decisions

• Cost
• Interfaces
• Stimulus/response
• Agility

– Command & control
– Competing resources
– Error detection and recovery

• Balance of elements: H/W, S/W, & humans
• System evolution

Presented at INCOSE 2010 Symposium Slide 116

Candidate Elements (Systems) for the
Missile Defense System

Presented at INCOSE 2010 Symposium

Built From

System of Systems

SoS Elements
(Initially Stand-
Alone Systems)

Source of graphics: Boeing website, www.boeing.com

Slide 117

LEVEL 2 of the Onion Model for this
SoS Example

Do It In
Layers

Primary Concurrent Engineering Activities At Each Layer

Layer 1
(Draft 1)

Layer 2
(Draft 2)

Layer n
(Final Specs.)

and
and

Behavior
Analysis

Synthesis/
Architecture

Design
V & V

System Design Repository Specification & Report Generation

Iterate as required When layer completed

Iterate as required When layer completed

Behavior
Analysis

Synthesis/
Architecture

Design
V & V

System Design Repository Specification & Report Generation

Behavior
Analysis

Synthesis/
Architecture

Design
V & V

System Design Repository Specification & Report Generation

Top-
level

Reqts.

Next-
level

Reqts.

Next-
level

Reqts.

Must complete a layer before moving to the next layer (completeness)
Cannot iterate back more than one layer (convergence)

Initial Requirements
for this layer are
embodied in the

model passed from
the prior layer

Initial Requirements
for this layer are
embodied in the

model passed from
the prior layer

Originating
Requirements

Analysis

Source
Documents

Level 2: Continue definition of SoS and System Design Repository
• Integrate scenarios to determine desired SoS to-be

functional architecture
• Capture the as-is system functions and interfaces resulting

from the candidate SoS elements/systems
• Identify the differences between the to-be SoS behavior

and interfaces and the aggregation of the existing SoS as-is
elements

Presented at INCOSE 2010 Symposium Slide 118

Traceability Hierarchy Including the
Selected SoS System Elements

Presented at INCOSE 2010 Symposium

d o c u m e n ts d o c u m e n ts

b u ilt f ro m

b u ilt f ro m

b u ilt f ro m

b u ilt f ro m

b u ilt f ro m

re f in e d b y

re f in e d b y

re f in e d b y

N MD D e s cr ip t io n
D o cu m e n t b y F e d e r a t io n
o f A m e r ic a n S c ie n t is t s

D o cu m e n t

S

S o S Na t io n a l M is s ile
D e fe n s e (NM D) S y s te m

C o m p o n e n t

S . 1

S p a c e Ba s e d I n f r a re d
S y s t e m (S B I R)

C o m p o n e n t

S . 2

U p g ra d e d E a r ly W a rn in g
R a d a r (U E W R)

C o m p o n e n t

S . 3

X - Ba n d / G r o u n d -Ba s e d
R a d a rs (XBR)

C o m p o n e n t

S . 5

N MD In -F lig h t In t e rc e p t o r
C o m mu n ica t io n s S y s te m

(I F IC S)

C o m p o n e n t

S . 6

N MD Ba t t le M a n a g e m e n t ,
C o m ma n d a n d C o n t ro l

(B MC 2)

C o m p o n e n t

O R . 1

P r o v id e A BM De f e n s e f o r
th e U . S .

R e q u ire m e n t

O R . 1 . 1

D e te c t a n d T r a c k

R e q u ire m e n t

O R . 1 . 2

T r a c k W ith G BR

R e q u ire m e n t

O R . 1 . 3

E n g a g e a n d De s t ro y
W a rh e a d s

R e q u ire m e n t

Source of document: Federation of American Scientists website, www.fas.org

Slide 119

N2 Model Highlights Problems with Communication
and Coordination Across the SoS System Elements

Presented at INCOSE 2010 Symposium

bmc.3

BMC3 root
function

dsp.1

DSP / SBIRS
root function

DSP Control

DSP data

dsp.2

DSP / SBIRS
root controller

gbi.1

Gbi root
function

GBI control

GBI data

gbi.2

Gbi root
controller

gbr.1

GBR root
function

GBR control

GBR data

gbr.2

GBR root
controller

uewr.1

UEWR root
function

UEWR
control

UEWR data

uewr.2

UEWR root
controller

Date:
June 20, 2004

Author:
Administrator

Number: Name:
SoS root function

Absence of data flow/interfaces
illustrates the need to integrate the
top level elements/systems into a

System of Systems

SBIR system

GBI system

GBR system

UEWR system

Slide 120

Derived Physical Links are Shown
via a Physical Block Diagram

Presented at INCOSE 2010 Symposium Slide 121

EFFBD Shows SoS Top Level
Functional Architecture and Interfaces

Presented at INCOSE 2010 Symposium Slide 122

N2 Diagram Shows SoS Top-Level
Interfaces, Independent of Time

Presented at INCOSE 2010 Symposium

1

NMC
Management &

Control

boost phase
track data
detection

data

midcourse
track data

Interceptor ...
kill assessm...
terminal trac...
XBR discrimi...

Interceptor
Data

boost phase
track status

object
detection st...

2

O bject Detection
and Boost P hase

Track

midcourse
track status

3

O bject Midcourse
Track

interceptor
track status

O bject Discr...
terminal trac...

4

O bject
Discrimination
And Terminal

Track

interceptor
status

5

Intercept
Planning and

Control

Slide 123

Additional Work to Complete
Our SE Effort

• Capture as-is stimulus-response behavior for each
of the candidate components

• Capture desired stimulus-response behavior for
each of the components

• Analyze the differences and design the
desired/necessary modifications to the current
components

• Design tests to verify that augmented system will
operate in an integrated mode

• Formulate a management process that will assure
the existing components systems and the new
desired component systems will operate as
necessary

Presented at INCOSE 2010 Symposium Slide 124

To Complete the Integration of the SoS
Elements into an SoS System

• Continue to apply model-based system definition
and development processes
– Layered definition
– Hierarchical decomposition
– Executable architecture
– Consistent design

• Continue to use a system definition repository and
leverage graphical representations

• Continue until three models are sufficiently defined
– Control
– Input/Output
– Physical architecture

Presented at INCOSE 2010 Symposium Slide 125

Final Thoughts on Applying MBSE to
Systems of Systems

• Challenges posed by SoS development are not
fundamentally unique
– SoS simply highlights the challenges posed by any

complex development effort
• MBSE is a key enabler providing

– Needed insight into the user requirements and solution
space

– Unambiguous executable architecture
– Reduced programmatic risk

• Successful execution of an SoS program requires
management commitment and understanding of the
challenges
– Technology alone is not the solution

Presented at INCOSE 2010 Symposium Slide 126

Summary and Review

Presented at INCOSE 2010 Symposium

Key Messages about
Systems Engineering

• Understanding what to do in systems engineering is
easy.

• Doing systems engineering well is difficult.
• Managing complexity is a major element of the

problem.
• Good systems engineering needs:

– Good systems engineering process,
– Good tools that support the process,
– Documented procedures and standards,
– Good technical management,
– Good engineers.

Presented at INCOSE 2010 Symposium

Automated tools do not do systems engineering…
only people do systems engineering.

Slide 128

Common SE Process Mistakes Today

• Process not convergent
• Functional model not distinct from Physical model
• Human and other physical components not included

in single integrated model
– Creates unnecessary, complex external interface

• Software broken out of integrated physical model
too soon in the process

• Select implementation architecture too soon
• COTS not treated with enough care

– Faster and cheaper today, at the expense of problems
tomorrow

Presented at INCOSE 2010 Symposium Slide 129

MBSE Benefits to the Enterprise

• MBSE supports the entire systems engineering
process

• Its use clarifies the derivation and management
of customer requirements

• The methodology provides a disciplined
technical basis for informed decision making

• It supports identification and resolution of issues,
interfaces, and risks

• It enables users to communicate and work in a
team environment via a common repository

Presented at INCOSE 2010 Symposium Slide 130

MBSE Benefits to the Enterprise, cont.

• Models allow simulation of the requirements:
– Performance, inconsistencies, interface, throughput,

resources
• Trade studies are substantiated with model outputs
• Life-cycle management of system models are traced

to requirements:
– System, subsystems, components, procurement, logistics,

and deployment
• Documents are artifacts of the engineering process
• Improved system design and communication quality
• Enhanced risk tracking and identification
• Robust architecture V&V

Presented at INCOSE 2010 Symposium Slide 131

Final Words

The Efficient SE Process

Presented at INCOSE 2010 Symposium

Essential Concepts/Benefits

• Language the problem and the solution space, include
semantically-meaningful graphics to stay explicit and
consistent
– Traceability
– Consistent graphics
– Automatic documentation and artifacts
– Dynamic validation and simulation
– Easier and more precise communication

• Utilize a Model-Based Systems Engineering (MBSE)
system design repository

• Engineer your system horizontally before vertically, i.e.,
do it in complete, converging layers

• Take advantage of the power of models
• Use tools to do the perspiration stuff. Use your brain to

do the inspiration stuff

Presented at INCOSE 2010 Symposium Slide 133

MBSE – Three Synchronized Models are Necessary
and Sufficient to Completely Specify a System

1. Control (functional behavior) model

2. Interface (data I/O) model

3. Physical architecture (component)
model

What about performance requirements / resources?
– Captured with parts/combinations of the above models

Presented at INCOSE 2010 Symposium

Models provide basis for knowing when you are done.
Selection of views is important; some provide more insight than others.

Slide 134

Model-Based Systems Engineering
Activities Timeline – Top Down

Activity bars represent movement of “center of gravity”
of systems engineering team.

Concurrent engineering is assumed.

5. Derive Integrated System Behavior

6. Derive Component Hierarchy

0. Define Need &
System Concept

1. Capture & Analyze
Orig. Requirements

2. Define System Boundary

4. Derive System
Threads

3. Capture Originating
Architecture Constraints

11. Define Resources, Error Detection, & Recovery Behavior

12. Develop Validation Requirements/Validation Plans

9. Select Design

13. Generate Documentation and Specifications

7. Allocate Behavior to
Components

8. Define Internal
Interfaces

10. Perform Effectiveness & Feasibility Analyses

SCHEDULE

Presented at INCOSE 2010 Symposium Slide 135

MBSE using the Onion Model. Do Systems
Engineering in Increments/Layers

Presented at INCOSE 2010 Symposium

Do It In
Layers

Primary Concurrent Engineering Activities At Each Layer

Layer 1
(Draft 1)

Layer 2
(Draft 2)

Layer n
(Final Specs.)

and
and

Behavior
Analysis

Synthesis/
Architecture

Design
V & V

System Design Repository Specification & Report Generation

Iterate as required When layer completed

Iterate as required When layer completed

Behavior
Analysis

Synthesis/
Architecture

Design
V & V

System Design Repository Specification & Report Generation

Behavior
Analysis

Synthesis/
Architecture

Design
V & V

System Design Repository Specification & Report Generation

Top-
level

Reqts.

Next-
level

Reqts.

Next-
level

Reqts.

Must complete a layer before moving to the next layer (completeness)
Cannot iterate back more than one layer (convergence)

Initial Requirements
for this layer are
embodied in the

model passed from
the prior layer

Initial Requirements
for this layer are
embodied in the

model passed from
the prior layer

Originating
Requirements

Analysis

Source
Documents

Slide 136

Don’t Waste Project Resources

• Designing to the three necessary and sufficient
MBSE models keeps the activities focused and
relevant

• Using the Onion model/layers keeps
development areas synchronized.
– Reduces breakage due to pre-emptive designs which

must be re-done
• Using a good system design language, a

repository, automatic graphic generation,
executability, and automatic documentation
provides maximum efficiency

• Do it right the first time!

Presented at INCOSE 2010 Symposium Slide 137

Consistency is Essential (Quality) and Efficient (Cost,
Maintenance, and Timeliness) – Use Improved Practices

Viewgraph Engineering
(Common Practice)

Model-Based SE
(Improved Practice)

Independent drawings Consistent views

Static diagrams Executable behavior[1]
Data storage Linked repository
Stored views Dynamic view generation

Ad hoc process
(inconsistent results)

Repeatable process
(consistent results)

Manual change
propagation across all
affected products (by the
systems engineer)

Automatic change
propagation across all
current and future
products (by the
engineering environment)

[1] Executable behavior eliminates structural or dynamic inconsistencies
from the requirements.

Presented at INCOSE 2010 Symposium Slide 138

How Do You Know When You Are Done
(at Each Layer)?

Process
Elements Completion Criteria

1. Originating
Requirements

1. Agreement on Acceptance Criteria

2. Behavior /
Functional
Architecture

2. Each function is uniquely allocated
to at most one component

3. Physical
Architecture
Definition

3. Segment/component specs are
complete requirements documents

4. Qualification 4. V&V requirements have been traced
to test system components

Presented at INCOSE 2010
Symposium Slide 139

How Do You Know WhenYou Are Done
with SE of the System?

• Within projected technology, you have an
achievable design specification for all system
components

• System V & V Plans are defined and fully traced

Presented at INCOSE 2010 Symposium Slide 140

Thank You!

For additional information:

James E. Long
jlong@vitechcorp.com

David Long
dlong@vitechcorp.com

Vitech Corporation
2270 Kraft Drive, Suite 1600

Blacksburg, VA, 24060
1.540.951.3322

www.vitechcorp.com

Presented at INCOSE 2010 Symposium Slide 141

	Model-Based Systems Engineering For Project Success: The Complete Process
	Topics
	A Brief Introduction to�Model-Based Systems Engineering
	Systems Engineering:�A Practice in Transition
	Systems Engineering:�Broad Applicability
	The Hidden Complexity�of Systems Engineering
	Model-Based Systems Engineering
	Setting the Context – The Four Primary�Systems Engineering Activities
	Primary Design Traceability; It’s Done with Relationships (Verbs), Not Attributes (Adjectives)
	Common SE “Tool Suite” Architecture
	The Preferred SE Tool Architecture
	The Systems Engineer’s Dilemma: Integration and Synchronization
	Why are there Problems with SE as Commonly Practiced Today?
	Essential Components of MBSE
	The Model-Based System Engineering Process: Its Inputs and Its Outputs
	Features of a Complete Systems Engineering Process
	What is a Model?
	MBSE – Three Synchronized Models are Necessary and Sufficient to Completely Specify a System
	Why is a System Definition�Language (SDL) Needed?
	Impacts of�Model-Based Systems Engineering
	The MBSE System Definition Language
	Model Element Property Sheet�(Representation in the Repository)
	A Set of Complete and Executable Graphical Constructs (Structured Representations)
	A Set of Complete and Executable Graphical Constructs (SysML Representations)
	The Power of Models and Graphical Representations
	Integrating the Four Primary SE Activities through a Design Repository
	Integrating the Repository and View Generators Provides Consistency
	View Generators using a Common Repository Guarantee Consistent Views
	A Momentary Aside for Some Insight – The Control Enablement & Data Triggering Spectrum
	Relationships of the Graphical Representations -�FFBDs & DFDs are Limiting Cases
	Applying an MBSE Process
	Model-Based Systems Engineering Activities Timeline – Top Down
	Model-Based System Engineering Activities Timeline – Reverse Engineering
	MBSE – the Onion Model�Doing Systems Engineering in Increments/Layers
	Concurrent Engineering Enables “Design It In” Don’t Try to Test It In, Review It In, Annotate It In …
	The Image Management System (IMS) Overview
	Essential Tasks Before You Start Development Activities
	A Process for Engineering the Image Management System
	Capture the Originating Requirements�“Making Sure That We Solve the Right Problem”
	Candidate Source Documents
	Capturing the System Requirements
	The Requirements Capture Approach
	Issues
	Risk
	The System Physical Boundary
	System Behavior
	The Many Faces of Behavior
	Identifying Use Cases
	Use Case Relationships
	Threads Offer Insight Into How the System Must Respond to Its Stimuli
	From Threads to Integrated Behavior�or Operational Architecture
	Conditions for a Function to Execute
	Key Concepts of Systems Engineering
	Relating the Functional and Physical Models
	Decomposition – The Problem
	Why Aggregate?
	Allocation of Behavior to the System’s Internal Components
	Allocation Implications
	Analyzing Message Flows and Sequencing between Components
	Allocating the System Functions
	Capturing the Interfaces
	System Physical Block Diagram
	Failure Modes and Effects Analysis
	The Discrete Event Simulator Supports Analysis and Design at All Levels
	The Executed Behavior Confirms System Logic and Supports Trade Studies
	Architectures and DoDAF – A More Complete Schematic
	Service Oriented Architecture�(SOA)
	Pre-SOA Configuration
	Pre-SOA Configuration
	Pre-SOA Configuration
	SOA Basics
	SOA Basics
	SOA Basics
	SOA Basics
	SOA Basics
	Power of MBSE for SOA
	DoDAF 2.0 and a MBSE Roadmap for Generating Architectures
	What is an Architecture?
	Architectures in Context
	Integrated and Federated Architectures
	From Architectures to a Framework: Why is a Framework Needed?
	DoDAF Evolution To Support “Fit For Purpose” Architecture
	DoDAF 2.0: A Marked Expansion
	DoDAF 2.0: A Marked Departure
	A Data-Centric Approach Supporting “Fit for Purpose” Views
	DoDAF 2.0 Model, View,�and Viewpoint Concepts
	DoDAF 2.0 Model, View,�and Viewpoint Concepts, cont.
	DoDAF 2.0 Viewpoints
	Envisioning Architecture Scope
	Communication Mismatch: Manager, Architect, and Domain Experts
	Challenges in Satisfyting the Intent of DoDAF
	Solution: Make Your DoDAF Efforts Part of the Greater Architecture / SE Effort
	An Integrated Environment Resolves the Data and Semantic Interface Problems
	A Model-Based�Systems Engineering Schema
	DoDAF 2.0 Schema: System and Operational Architectures
	DoDAF 2.0 Schema: Capturing the Program Dimension
	Relationship between�OV and SV Generation
	Model-Based Systems Engineering Activities Timeline – Top Down
	Traditional DoDAF Views within the Systems Development Timeline
	MBSE in Practice: Developing a�System of Systems
	What is a System?
	What is a System of Systems (SoS)?
	Multiple Classes of SoS
	Challenges Posed by SoS
	A Definition of System to Keep in Mind for SoS
	Stakeholder Requirements for the Missile Defense System of Systems
	MBSE – The Onion Model for the SoS Example
	Overview of the MBSE Process for this Hybrid SoS
	LEVEL 1 of the Onion Model for this SoS Example
	SoS Source Document and Requirements are Extracted and Shown in Traceability Hierarchy
	Details of the SoS Source Requirements, Showing Relationships and Attributes
	Operational Scenario Provides the Basis for Defining the Top Level System Functions
	Scenario 1: Provide Basic SoS Functions
	Make-or-Buy Decisions
	Pre-existing System Elements:�What Do You Get?
	Considerations in�Make-or-Buy Decisions
	Candidate Elements (Systems) for the Missile Defense System
	LEVEL 2 of the Onion Model for this SoS Example
	Traceability Hierarchy Including the Selected SoS System Elements
	N2 Model Highlights Problems with Communication and Coordination Across the SoS System Elements
	Derived Physical Links are Shown�via a Physical Block Diagram
	EFFBD Shows SoS Top Level Functional Architecture and Interfaces
	N2 Diagram Shows SoS Top-Level Interfaces, Independent of Time
	Additional Work to Complete�Our SE Effort
	To Complete the Integration of the SoS Elements into an SoS System
	Final Thoughts on Applying MBSE to Systems of Systems
	Summary and Review
	Key Messages about�Systems Engineering
	Common SE Process Mistakes Today
	MBSE Benefits to the Enterprise
	MBSE Benefits to the Enterprise, cont.
	Final Words The Efficient SE Process
	Essential Concepts/Benefits
	MBSE – Three Synchronized Models are Necessary and Sufficient to Completely Specify a System
	Model-Based Systems Engineering Activities Timeline – Top Down
	MBSE using the Onion Model. Do Systems Engineering in Increments/Layers
	Don’t Waste Project Resources
	Consistency is Essential (Quality) and Efficient (Cost, Maintenance, and Timeliness) – Use Improved Practices
	How Do You Know When You Are Done (at Each Layer)?
	How Do You Know WhenYou Are Done with SE of the System?
	Thank You!

	Prev:
	Next:
	Close:
	First:

